

# 產品規格書

## **Market Requirement Document**

**CUSTOMER:** 

**PRODUCT** :

**MODEL:** 

**PARAMETER:** 

DATE:

声表面谐振器

F11-R330M

**R330M** 

## 承認後請寄回一份

PLEASE RETURN ONE COPY TO US SO THAT WE GET YOUR APPROVAL

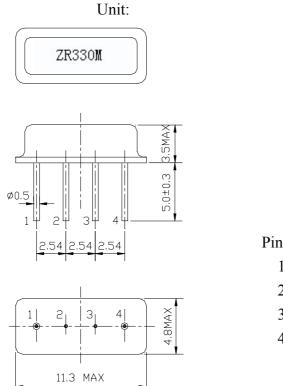
| 承認結果       | 客戶簽名      | 客戶承認章 | 日期   | 備注     |
|------------|-----------|-------|------|--------|
| CONCLUSION | SIGNATURE | STAMP | DATE | REMARK |
| 合格         |           |       |      |        |
| ACCEPT     |           |       |      |        |
| 不合格        |           |       |      |        |
| REJECT     |           |       |      |        |

制表: 钟先生

审核:

(公章)

尊敬的客户:请您抽出一点时间,在7-10个工作日内将承认书回签,若未回签,以视默认.谢谢合作!


深圳市兆现电子有限公司

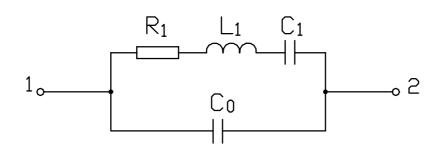
電話:0755-27876236

http://www.zhaoxiandz.com

#### 1. Package Dimension






Pin No. Function

mm

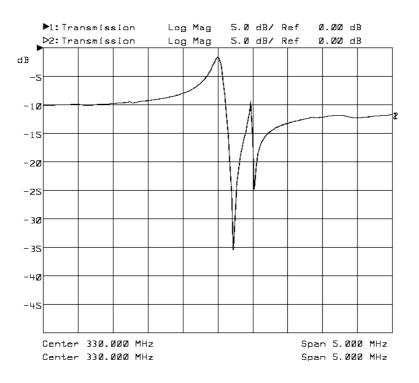
- 1. Input
- 2. Ground
- 3. Ground
- 4. Output

#### 2. Marking

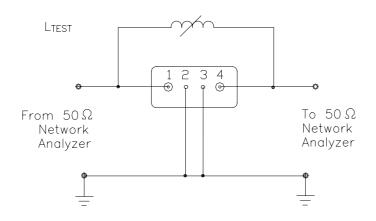
- ZX 330.00
- 1. Color: Black or Blue
- 2. D: Manufacture's logo
- 3. R1: One-port SAW Resonator
- 4. 330.00: Center Frequency (MHz)
- 3. Equivalent LC Model



### 4. Performance


#### 4.1 Maximum Rating

| DC Voltage V <sub>DC</sub> | 10V             |  |  |
|----------------------------|-----------------|--|--|
| AC Voltage V <sub>PP</sub> | 10V (50Hz/60Hz) |  |  |
| Operation Temperature      | -40 °C to +85°C |  |  |
| Storage Temperature        | -45 °C to +85°C |  |  |
| RF Power Dissipation       | 0dBm            |  |  |


#### 4.2 Electronic Characteristics

| Item                       |                                     | Units               | Minimum | Typical | Maximum |
|----------------------------|-------------------------------------|---------------------|---------|---------|---------|
| Center Frequency fo        |                                     | MHz                 | 329.925 | 330.00  | 330.075 |
| Insertion Loss             |                                     | dB                  |         | 1.3     | 2.5     |
| Quality Factor             | Unloaded Q                          | _                   |         | 10,700  |         |
|                            | $50\Omega$ Loaded Q                 |                     |         | 2,000   |         |
| Tem perature               | Turnover Temperature                | °C                  |         | 39      |         |
| Stability                  | Turnover Frequency                  | KHz                 |         | fo+2.7  |         |
|                            | Freq. Temp. Coefficient             | ppm/°C <sup>2</sup> |         | 0.032   |         |
| Frequency Aging            |                                     | ppm/yr              |         | <±10    |         |
| DC Insulation Resistance   |                                     | ΜΩ                  | 1.0     |         |         |
| RF Equivalent<br>RLC Model | Motional Resistance R <sub>1</sub>  | Ω                   |         | 25      | 32      |
|                            | Motional Inductance L <sub>1</sub>  | μH                  |         | 130.92  |         |
|                            | Motional Capacitance C <sub>1</sub> | fF                  | _       | 1.78    | —       |
|                            | Shunt Static Capacitance Co         | pF                  | 1.9     | 2.2     | 2.5     |

#### 4.3 Frequency Characteristics



#### 4.4 Test Circuit



Note: Reference temperature shall be  $25 \pm 2^{\circ}$ C. However, the measurement may be carried out at 5°C to 35°C unless there is a dispute.

#### 5. Reliability

5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration  $392 \text{ m/s}^2$ , duration 6 milliseconds.

5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.

5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.

5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85°C  $\pm 2$ °C for 48 hours, then kept at room temperature for 2 hours.

5.5 Low Temperature Storage: The components shall remain within the electrical

specifications after being kept at the  $-25^{\circ}C \pm 2^{\circ}C$  for 48 hours, then kept at room temperature for 2 hours.

5.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle:  $80^{\circ}$ C for 30 minutes  $\rightarrow$  25°C for 5 minutes  $\rightarrow$ -25°C for 30 minutes )than kept at room temperature for 2 hours.

5.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260°C for  $10\pm1$  seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

5.8 Solderability: Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at  $230^{\circ}C \pm 5^{\circ}C$  for  $5 \pm 1$  seconds.

#### 6. Remarks

#### 6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

#### 6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

#### 6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.